Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effects of Injection Timing and Diluent Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2-D Imaging of OH and Soot

2000-03-06
2000-01-0238
The effects of injection timing and diluent addition on the late-combustion soot burnout in a direct-injection (DI) diesel engine have been investigated using simultaneous planar imaging of the OH-radical and soot distributions. Measurements were made in an optically accessible DI diesel engine of the heavy-duty size class at a 1680 rpm, high-load operating condition. A dual-laser, dual-camera system was used to obtain the simultaneous “single-shot” images using planar laser-induced fluorescence (PLIF) and planar laser-induced incandescence (PLII) for the OH and soot, respectively. The two laser beams were combined into overlapping laser sheets before being directed into the combustion chamber, and the optical signal was separated into the two cameras by means of an edge filter.
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Journal Article

The Effect of Acetylene on Iso-octane Combustion in an HCCI Engine with NVO

2012-09-10
2012-01-1574
Prior studies have shown that fuel addition during negative valve overlap (NVO) can both increase temperature and alter composition of the charge carried over to main HCCI combustion. Late NVO fuel injection, i.e., near top dead center, can cause piston wetting and subsequent localized rich flames. Since acetylene is a product of rich combustion and is known to advance ignition, it is hypothesized that the species could play a chemical role in enhancing main combustion. The objective of this work is to quantify the effects of acetylene on HCCI combustion. While the research topic is specifically relevant to NVO-fueled HCCI operation, the experiments are conducted without NVO fueling to avoid uncertainties of NVO reforming reactions. Instead, a single post-NVO injection of iso-octane fuels the cycle, and acetylene is seeded into the intake flow at varying concentrations to simulate a reformed product of NVO.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Standardized Optical Constants for Soot Quantification in High-Pressure Sprays

2018-04-03
2018-01-0233
Soot formation in high-pressure n-dodecane sprays is investigated under conditions relevant to heavy-duty diesel engines. Sprays are injected from a single-hole diesel injector belonging to the family of engine combustion network (ECN) Spray D injectors. Soot is quantified using a high-speed extinction imaging diagnostic with incident light wavelengths of 623 nm and 850 nm. Previously, soot measurements in a high-pressure spray using 406-nm and 520-nm incident light demonstrated a minimal wavelength dependence in the complex refractive index of soot (m), as demonstrated by a near unity ratio of the non-dimensional extinction coefficients (ke,406 nm/ke,520 nm). The present work, however, demonstrates a significant difference in m for measurements with infrared incident light. During the quasi-steady period of the spray combustion event, the experimentally determined ke ratio (ke,623 nm/ke,850 nm) is 1.42 ± 0.27.
Technical Paper

Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine – Effects of Equivalence Ratio and Intake Boost

2018-04-03
2018-01-1252
Low-temperature gasoline combustion (LTGC) engines can deliver high efficiencies, with ultra-low emissions of nitrogen oxides (NOx) and particulate matter (PM). However, controlling the combustion timing and maintaining robust operation remains a challenge for LTGC engines. One promising technique to overcoming these challenges is spark assist (SA). In this work, well-controlled, fully premixed experiments are performed in a single-cylinder LTGC research engine at 1200 rpm using a cylinder head modified to accommodate a spark plug. Compression ratios (CR) of 16:1 and 14:1 were used during the experiments. Two different fuels were also tested, with properties representative of premium- and regular-grade market gasolines. SA was found to work well for both CRs and fuels. The equivalence ratio (ϕ) limits and the effect of intake-pressure boost on the ability of SA to compensate for a reduced Tin were studied. For the conditions studied, ϕ=0.42 was found to be most effective for SA.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions

2012-04-16
2012-01-0678
Future fuels will come from a variety of feed stocks and refinement processes. Understanding the fundamentals of combustion and pollutants formation of these fuels will help clear hurdles in developing flex-fuel combustors. To this end, we investigated the combustion, soot formation, and soot oxidation processes for various classes of fuels, each with distinct physical properties and molecular structures. The fuels considered include: conventional No. 2 diesel (D2), low-aromatics jet fuel (JC), world-average jet fuel (JW), Fischer-Tropsch synthetic fuel (JS), coal-derived fuel (JP), and a two-component surrogate fuel (SR). Fuel sprays were injected into high-temperature, high-pressure ambient conditions that were representative of a practical diesel engine. Simultaneous laser extinction measurement and planar laser-induced incandescence imaging were performed to derive the in-situ soot volume fraction.
Technical Paper

Soot Formation in Diesel Combustion under High-EGR Conditions

2005-10-24
2005-01-3834
Experiments were conducted in an optically accessible constant-volume combustion vessel to investigate soot formation at diesel combustion conditions in a high exhaust-gas recirculation (EGR) environment. The ambient oxygen concentration was decreased systematically from 21% to 8% to simulate a wide range of EGR conditions. Quantitative measurements of in-situ soot in quasi-steady n-heptane and #2 diesel fuel jets were made by using laser extinction and planar laser-induced incandescence (PLII) measurements. Flame lift-off length measurements were also made in support of the soot measurements. At constant ambient temperature, results show that the equivalence ratio estimated at the lift-off length does not vary with the use of EGR, implying an equal amount of fuel-air mixing prior to combustion. Soot measurements show that the soot volume fraction decreases with increasing EGR.
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Technical Paper

Simulation of a Crankcase Scavenged, Two-Stroke, SI Engine and Comparisons with Experimental Data

1969-02-01
690135
A detailed mathematical model of the thermodynamic events of a crankcase scavenged, two-stroke, SI engine is described. The engine is divided into three thermodynamic systems: the cylinder gases, the crankcase gases, and the inlet system gases. Energy balances, mass continuity equations, the ideal gas law, and thermodynamic property relationships are combined to give a set of coupled ordinary differential equations which describe the thermodynamic states encountered by the systems of the engine during one cycle of operation. A computer program is used to integrate the equations, starting with estimated initial thermodynamic conditions and estimated metal surface temperatures. The program iterates the cycle, adjusting the initial estimates, until the final conditions agree with the beginning conditions, that is, until a cycle results.
Technical Paper

Selective Galvanizing Using Kinetic Spraying

2003-03-03
2003-01-1237
General corrosion protection of sheet materials such as steel used in automobile construction has reached a high level of performance, due primarily to the incorporation of mill-applied treatments such as electrogalvanizing, galvannealing and other coil-coating processes developed over the last half century. While such treatments have greatly extended the corrosion resistance of steel and its various body constructs, attention is now focused on aspects of the manufacturing process wherein these intended protections are compromised by such features as weldments, joins, cut edges and extreme metal deformations such as hems. A novel metal deposition process, based on high-velocity impact fusion of solid metal particles, has been used to extend the corrosion resistance of base steel and pre-galvanized sheet, by selectively placing highly controlled depositions of zinc and other sacrificial materials in close proximity to critical manufacturing details.
Technical Paper

Refining Measurement Uncertainties in HCCI/LTGC Engine Experiments

2018-04-03
2018-01-1248
This study presents estimates for measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility. A previously presented framework for quantifying those uncertainties developed uncertainty estimates based on the transducers manufacturers’ published tolerances. The present work utilizes the framework with improved uncertainty estimates in order to more accurately represent the actual uncertainties of the data acquired in the HCCI/LTGC laboratory, which ultimately results in a reduction in the uncertainty from 30 to less than 1 kPa during the intake and exhaust strokes. Details of laboratory calibration techniques and commissioning runs are used to constrain the sensitivities of the transducers relative to manufacturer supplied values.
Technical Paper

Real-Time Measurement of the Volatile Fraction of Diesel Particulate Matter Using Laser-Induced Desorption with Elastic Light Scattering (LIDELS)

2002-05-06
2002-01-1685
A new diagnostic technique is described that has the capability of making real-time, in situ measurements of the volatile fraction of diesel particulate matter (PM). LIDELS uses two laser pulses of comparable energy, separated in time by an interval sufficiently short to freeze the flow field, to measure the change in PM volume caused by laser-induced desorption of the volatile fraction. The first laser pulse produces elastic light scattering (ELS) that gives the volume of the total PM, and also deposits the energy to desorb the volatiles. ELS from the second pulse gives the volume of the remaining solid portion of the PM, and the ratio of these two measurements is the quantitative solid volume fraction. Calibration is required for the individual total PM and solid fraction to be quantitative. Applicability of the technique is demonstrated for load and EGR sweeps for a turbocharged, direct-injection diesel engine.
Journal Article

RCCI Combustion Regime Transitions in a Single-Cylinder Optical Engine and a Multi-Cylinder Metal Engine

2017-09-04
2017-24-0088
Reactivity Controlled Compression Ignition (RCCI) is an approach to increase engine efficiency and lower engine-out emissions by using in-cylinder stratification of fuels with differing reactivity (i.e., autoignition characteristics) to control combustion phasing. Stratification can be altered by varying the injection timing of the high-reactivity fuel, causing transitions across multiple regimes of combustion. When injection is sufficiently early, combustion approaches a highly-premixed autoignition regime, and when it is sufficiently late it approaches more mixing-controlled, diesel-like conditions. Engine performance, emissions, and control authority over combustion phasing with injection timing are most favorable in between, within the RCCI regime.
Technical Paper

Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging

2007-04-16
2007-01-0647
This paper details the development and application of a Rayleigh imaging technique for quantitative mixing measurements in a vaporizing diesel spray under engine conditions. Experiments were performed in an optically accessible constant-volume combustion vessel that simulated the ambient conditions in a diesel engine. Two-dimensional imaging of Rayleigh scattering from a diesel spray of n-heptane and well-characterized ambient was accomplished by using a 532 nm Nd:YAG laser sheet and a low-noise back-illuminated CCD camera. Methods to minimize interference from unwanted elastic scattering sources (e.g. windows, particles) were investigated and are discussed in detail. The simultaneous measurement of Rayleigh scattering signal from the ambient and from the diesel spray provides important benefits towards making the technique quantitative and accurate.
Technical Paper

Qualitative Laser-Induced Incandescence Measurements of Particulate Emissions During Transient Operation of a TDI Diesel Engine

2001-09-24
2001-01-3574
Laser-induced incandescence (LII) is a sensitive diagnostic technique capable of making exhaust particulate-matter measurements during transient operating conditions. This paper presents measurements of LII signals obtained from the exhaust gas of a 1.9-L TDI diesel engine. A scanning mobility particle sizer (SMPS) is used in fixed-size mode to obtain simultaneous number concentration measurements in real-time. The transient studies presented include a cranking-start/idle/shutdown sequence, on/off cycling of EGR, and rapid load changes. The results show superior temporal response of LII compared to the SMPS. Additional advantages of LII are that exhaust dilution and cooling are not required, and that the signal amplitude is directly proportional to the carbon volume fraction and its temporal decay is related to the primary particle size.
Technical Paper

Pressure-Based Knock Measurement Issues

2017-03-28
2017-01-0668
Highly time resolved measurements of cylinder pressure acquired simultaneously from three transducers were used to investigate the nature of knocking combustion and to identify biases that the pressure measurements induce. It was shown by investigating the magnitude squared coherence (MSC) between the transducer signals that frequency content above approximately 40 kHz does not originate from a common source, i.e., it originates from noise sources. The major source of noise at higher frequency is the natural frequency of the transducer that is excited by the impulsive knock event; even if the natural frequency is above the sampling frequency it can affect the measurements by aliasing. The MSC analysis suggests that 40 kHz is the appropriate cutoff frequency for low-pass filtering the pressure signal. Knowing this, one can isolate the knock event from noise more accurately.
Journal Article

Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding

2013-04-08
2013-01-0917
This work is a technical review of past research and a synthesis of current understanding of post injections for soot reduction in diesel engines. A post injection, which is a short injection after a longer main injection, is an in-cylinder tool to reduce engine-out soot to meet pollutant emissions standards while maintaining efficiency, and potentially to reduce or eliminate exhaust aftertreatment. A sprawling literature on post injections documents the effects of post injections on engine-out soot with variations in many engine operational parameters. Explanations of how post injections lead to engine-out soot reduction vary and are sometimes inconsistent or contradictory, in part because supporting fundamental experimental or modeling data are often not available. In this paper, we review the available data describing the efficacy of post-injections and highlight several candidate in-cylinder mechanisms that may control their efficacy.
Technical Paper

Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation

2001-03-05
2001-01-1203
Piston-wetting effects are investigated in an optical direct-injection spark-ignition (DISI) engine. Fuel spray impingement on the piston leads to the formation of fuel films, which are visualized with a laser-induced fluorescence (LIF) imaging technique. Oxygen quenching is found to reduce the fluorescence yield from liquid gasoline. Fuel films that exist during combustion of the premixed charge ignite to create piston-top pool fires. These fires are characterized using direct flame imaging. Soot produced by the pool fires is imaged using laser elastic scattering and is found to persist throughout the exhaust stroke, implying that piston-top pool fires are a likely source of engine-out particulate emissions for DISI engines.
X